Vizro

Vizro

provides tools and templates to create a functioning Vizro chart or dashboard step by step.

2.4K

1

6 Tools

Signed
Built by Docker
Add to Docker Desktop

Version 4.43 or later needs to be installed to add the server automatically

About

Vizro MCP Server

provides tools and templates to create a functioning Vizro chart or dashboard step by step.

What is an MCP Server?

Characteristics

AttributeDetails
Docker Imagemcp/vizro
Authormckinsey
Repositoryhttps://github.com/mckinsey/vizro
Dockerfilehttps://github.com/mckinsey/vizro/blob/main/vizro-mcp/Dockerfile
Docker Image built byDocker Inc.
Docker Scout Health ScoreDocker Scout Health Score
Verify SignatureCOSIGN_REPOSITORY=mcp/signatures cosign verify mcp/vizro --key https://raw.githubusercontent.com/docker/keyring/refs/heads/main/public/mcp/latest.pub
LicenceApache License 2.0

Available Tools (6)

Tools provided by this ServerShort Description
get_model_json_schemaGet the JSON schema for the specified Vizro model.
get_sample_data_infoIf user provides no data, use this tool to get sample data information.
get_vizro_chart_or_dashboard_planGet instructions for creating a Vizro chart or dashboard.
load_and_analyze_dataUse to understand local or remote data files.
validate_chart_codeValidate the chart code created by the user and optionally open the PyCafe link in a browser.
validate_dashboard_configValidate Vizro model configuration.

Tools Details

Tool: get_model_json_schema

Get the JSON schema for the specified Vizro model.

ParametersTypeDescription
model_namestringName of the Vizro model to get schema for (e.g., 'Card', 'Dashboard', 'Page')

Tool: get_sample_data_info

If user provides no data, use this tool to get sample data information.

Use the following data for the below purposes:
    - iris: mostly numerical with one categorical column, good for scatter, histogram, boxplot, etc.
    - tips: contains mix of numerical and categorical columns, good for bar, pie, etc.
    - stocks: stock prices, good for line, scatter, generally things that change over time
    - gapminder: demographic data, good for line, scatter, generally things with maps or many categories
ParametersTypeDescription
data_namestringName of the dataset to get sample data for

Tool: get_vizro_chart_or_dashboard_plan

Get instructions for creating a Vizro chart or dashboard. Call FIRST when asked to create Vizro things.

Must be ALWAYS called FIRST with advanced_mode=False, then call again with advanced_mode=True
if the JSON config does not suffice anymore.
ParametersTypeDescription
user_hoststringThe host the user is using, if "ide" you can use the IDE/editor to run python code
user_planstringThe type of Vizro thing the user wants to create
advanced_modebooleanoptionalOnly call if you need to use custom CSS, custom components or custom actions.

Tool: load_and_analyze_data

Use to understand local or remote data files. Must be called with absolute paths or URLs.

Supported formats:
- CSV (.csv)
- JSON (.json)
- HTML (.html, .htm)
- Excel (.xls, .xlsx)
- OpenDocument Spreadsheet (.ods)
- Parquet (.parquet)
ParametersTypeDescription
path_or_urlstringAbsolute (important!) local file path or URL to a data file

Tool: validate_chart_code

Validate the chart code created by the user and optionally open the PyCafe link in a browser.

ParametersTypeDescription
chart_configstringA ChartPlan object with the chart configuration
data_infostringMetadata for the dataset to be used in the chart
auto_openbooleanoptionalWhether to automatically open the PyCafe link in a browser

Tool: validate_dashboard_config

Validate Vizro model configuration. Run ALWAYS when you have a complete dashboard configuration.

If successful, the tool will return the python code and, if it is a remote file, the py.cafe link to the chart.
The PyCafe link will be automatically opened in your default browser if auto_open is True.
ParametersTypeDescription
custom_chartsarrayList of ChartPlan objects containing information about the custom charts in the dashboard
dashboard_configobjectEither a JSON string or a dictionary representing a Vizro dashboard model configuration
data_infosarrayList of DFMetaData objects containing information about the data files
auto_openbooleanoptionalWhether to automatically open the PyCafe link in a browser

Use this MCP Server

{
  "mcpServers": {
    "vizro": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "mcp/vizro"
      ]
    }
  }
}

Why is it safer to run MCP Servers with Docker?

Manual installation

You can install the MCP server using:

Installation for

Related servers