Public Repository

Last pushed: 16 days ago
Short Description
NATS is an open-source, high-performance, cloud native messaging system.
Full Description

Supported tags and respective Dockerfile links

Simple Tags

Shared Tags

(arm32v7/nats build job)

Quick reference

NATS: A high-performance cloud native messaging system.

nats is a high performance server for the NATS Messaging System.

Example usage

# Run a NATS server
# Each server exposes multiple ports
# 4222 is for clients.
# 8222 is an HTTP management port for information reporting.
# 6222 is a routing port for clustering.
#
# To actually publish the ports when running the container, use the Docker port mapping
# flag "docker run -p <hostport>:<containerport>" to publish and map one or more ports,
# or the -P flag to publish all exposed ports and map them to high-order ports.
#
# This should not be confused with the NATS Server own -p parameter.
# For instance, to run the NATS Server and have it listen on port 4444,
# you would have to run like this:
#
#   docker run -p 4444:4444 arm32v7/nats -p 4444
#
# Or, if you want to publish the port 4444 as a different port, for example 5555:
#
#   docker run -p 5555:4444 arm32v7/nats -p 4444
#
# Check "docker run" for more information.

$ docker run -d --name nats-main -p 4222:4222 -p 6222:6222 -p 8222:8222 arm32v7/nats
[INF] Starting nats-server version 1.2.0
[INF] Git commit [6608e9a]
[INF] Starting http monitor on 0.0.0.0:8222
[INF] Listening for client connections on 0.0.0.0:4222
[INF] Server is ready
[INF] Listening for route connections on 0.0.0.0:6222

...

# To run a second server and cluster them together..
# Note that since you are passing arguments, this overrides the CMD section
# of the Dockerfile, so you need to pass all arguments, including the
# config file.
$ docker run -d --name=nats-2 --link nats-main -p 4222:4222 -p 6222:6222 -p 8222:8222 arm32v7/nats -c gnatsd.conf --routes=nats-route://ruser:T0pS3cr3t@nats-main:6222

# If you want to verify the routes are connected, try this instead:
$ docker run -d --name=nats-2 --link nats-main -p 4222:4222 -p 6222:6222 -p 8222:8222 arm32v7/nats -c gnatsd.conf --routes=nats-route://ruser:T0pS3cr3t@nats-main:6222 -DV
[INF] Starting nats-server version 1.2.0
[DBG] Go build version go1.10.3
[INF] Git commit [6608e9a]
[INF] Starting http monitor on 0.0.0.0:8222
[INF] Listening for client connections on 0.0.0.0:4222
[DBG] Server id is TH1MRk9Mug4fgIDdcXIo6R
[INF] Server is ready
[INF] Listening for route connections on 0.0.0.0:6222
[DBG] Trying to connect to route on nats-main:6222
[DBG] 172.17.0.2:6222 - rid:1 - Route connection created
[DBG] 172.17.0.2:6222 - rid:1 - Route connect msg sent
[DBG] 172.17.0.2:6222 - rid:1 - Registering remote route "kxi2il81mIY4TsgwdGl9Fb"
[DBG] 172.17.0.2:6222 - rid:1 - Route sent local subscriptions

The server will load the configuration file below. Any command line flags can override these values.

Default Configuration File

# Client port of 4222 on all interfaces
port: 4222

# HTTP monitoring port
monitor_port: 8222

# This is for clustering multiple servers together.
cluster {

  # Route connections to be received on any interface on port 6222
  port: 6222

  # Routes are protected, so need to use them with --routes flag
  # e.g. --routes=nats-route://ruser:T0pS3cr3t@otherdockerhost:6222
  authorization {
    user: ruser
    password: T0pS3cr3t
    timeout: 0.75
  }

  # Routes are actively solicited and connected to from this server.
  # This Docker image has none by default, but you can pass a
  # flag to the gnatsd docker image to create one to an existing server.
  routes = []
}

Commandline Options

Server Options:
    -a, --addr <host>                Bind to host address (default: 0.0.0.0)
    -p, --port <port>                Use port for clients (default: 4222)
    -P, --pid <file>                 File to store PID
    -m, --http_port <port>           Use port for http monitoring
    -ms,--https_port <port>          Use port for https monitoring
    -c, --config <file>              Configuration file
    -sl,--signal <signal>[=<pid>]    Send signal to gnatsd process (stop, quit, reopen, reload)
        --client_advertise <string>  Client URL to advertise to other servers

Logging Options:
    -l, --log <file>                 File to redirect log output
    -T, --logtime                    Timestamp log entries (default: true)
    -s, --syslog                     Log to syslog or windows event log
    -r, --remote_syslog <addr>       Syslog server addr (udp://localhost:514)
    -D, --debug                      Enable debugging output
    -V, --trace                      Trace the raw protocol
    -DV                              Debug and trace

Authorization Options:
        --user <user>                User required for connections
        --pass <password>            Password required for connections
        --auth <token>               Authorization token required for connections

TLS Options:
        --tls                        Enable TLS, do not verify clients (default: false)
        --tlscert <file>             Server certificate file
        --tlskey <file>              Private key for server certificate
        --tlsverify                  Enable TLS, verify client certificates
        --tlscacert <file>           Client certificate CA for verification

Cluster Options:
        --routes <rurl-1, rurl-2>    Routes to solicit and connect
        --cluster <cluster-url>      Cluster URL for solicited routes
        --no_advertise <bool>        Advertise known cluster IPs to clients
        --cluster_advertise <string> Cluster URL to advertise to other servers
        --connect_retries <number>   For implicit routes, number of connect retries


Common Options:
    -h, --help                       Show this message
    -v, --version                    Show version
        --help_tls                   TLS help

License

View license information for the software contained in this image.

As with all Docker images, these likely also contain other software which may be under other licenses (such as Bash, etc from the base distribution, along with any direct or indirect dependencies of the primary software being contained).

Some additional license information which was able to be auto-detected might be found in the repo-info repository's nats/ directory.

As for any pre-built image usage, it is the image user's responsibility to ensure that any use of this image complies with any relevant licenses for all software contained within.

Docker Pull Command
Owner
arm32v7