## hdft-subsampled-recon

Build context for a Flywheel compatible Gear for the HDFT Subsampled Recon algorithm from Schneider Lab, University of Pittsburgh.

This **sample** code computes a transformation of multi-shell diffusion weighted data to a set of Spherical Harmonic coefficients. Outputs 4D Spherical Harmonic coefficient data. This is a first step in the Schneider Lab HDFT diffusion reconstruction process.

### Inputs

`dwi_filename`

: input filename of 4D DWI data`subsampling_vec`

: input vector to select volumes from`dwi_filename`

(can be a text file or CSV)`bvals_filename`

: input file of Nx1 b values`bvecs_filename`

: input file of Nx3 b vectors

### Parameters

`spherical_harmonics_order`

: The maximum order of spherical harmonics. Defaulted to`8`

.`mean_diffusion_length`

: The mean diffusion length for reconstruction of GQI matrix. Defaulted to`1.2`

.

### Output

`sh_filename`

: 4D Spherical Harmonic coefficient data.

### Reference

Pathak, S. K., Fissell, C., Krishnaswamy, D., Aggarwal, S., Hachey, R., Schneider, W. (2015).

Diffusion reconstruction by combining spherical harmonics and generalized q-sampling imaging.

ISMRM, Toronto, Canada.

### License

All code is copyright University of Pittsburgh unless alternate authorship noted.

This code is not for public distribution, please contact Schneider Lab re distribution.

http://www.lrdc.pitt.edu/schneiderlab/