aistaging/qwen3-reranker-vllm

By aistaging

Updated 3 months ago

Multilingual reranking model for text retrieval, scoring document relevance across 119 languages.

Model
0

90

aistaging/qwen3-reranker-vllm repository overview

Qwen3-Reranker

The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.


📌 Characteristics

AttributeValue
ProviderAlibaba Cloud
Architectureqwen3
Languages119 languages from multiple families (Indo European, Sino-Tibetan, Afro-Asiatic, Austronesian, Dravidian, Turkic, Tai-Kadai, Uralic, Austroasiatic) including others like Japanese, Basque, Haitian,...
Tool calling
Input modalitiesText
Output modalitiesScores
LicenseApache 2.0

Available model variants

Model variantParametersQuantizationContext windowVRAM¹Size
ai/qwen3-reranker-vllm:4B

ai/qwen3-reranker-vllm:latest
4BF1632K tokens8 GiB1.11 GB
ai/qwen3-reranker-vllm:0.6B0.6BF1632K tokens1.2 GiB2.32 GB
ai/qwen3-reranker-vllm:8B8BF1632K tokens16 GiB7.49 GB

¹: VRAM estimated based on model characteristics.

latest4B


🐳 Using this model with Docker Model Runner

First, pull the model:

docker model pull ai/qwen3-reranker-vllm

Then run the model:

curl --location 'http://localhost:8080/engines/vllm/rerank' \
--header 'Content-Type: application/json' \
--data '{
  "model": "ai/qwen3-reranker-vllm:0.6B",
  "query": "What is the capital of France?",
  "documents": [
    "The capital of Brazil is Brasilia.",
    "The capital of France is Paris.",
    "Horses and cows are both animals."
  ]
}'
curl --location 'http://localhost:8080/engines/vllm/score' \
--header 'Content-Type: application/json' \
--data '{
  "model": "ai/qwen3-reranker-vllm:0.6B",
  "text_1": "ping",
  "text_2": "pong"
}'

For more information, check out the Docker Model Runner docs.


Evaluation

ModelParamMTEB-RCMTEB-RMMTEB-RMLDRMTEB-CodeFollowIR
Qwen3-Embedding-0.6B0.6B61.8271.0264.6450.2675.415.09
Jina-multilingual-reranker-v2-base0.3B58.2263.3763.7339.6658.98-0.68
gte-multilingual-reranker-base0.3B59.5174.0859.4466.3354.18-1.64
BGE-reranker-v2-m30.6B57.0372.1658.3659.5141.38-0.01
Qwen3-Reranker-0.6B0.6B65.8071.3166.3667.2873.425.41
Qwen3-Reranker-4B4B69.7675.9472.7469.9781.2014.84
Qwen3-Reranker-8B8B69.0277.4572.9470.1981.228.05

Tag summary

Content type

Model

Digest

sha256:9c5bddaef

Size

15.3 GB

Last updated

3 months ago

docker model pull aistaging/qwen3-reranker-vllm:8B